Analogs of Ecdysteroids with a Tetrasubstituted $\Delta^{8,14}$ -Bond*

V. N. Odinokov^a, R. V. Shafikov^a, R. G. Savchenko^a, S. R. Afon'kina^a, I. V. Galyautdinov^a, L. M. Khalilov^a, and A. S. Shashkov^b

^aInstitute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075 Russia e-mail: ink@anrb.ru ^bZelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow

Received May 24, 2007

Abstract—By hydrogenation of (20R,22R)- 6α , 14α , 25-trihydroxy- and (20R,22R)- 6β , 14α , 25-trihydroxy-2, 3:20, 22bis(isopropylidenedioxy)- 5α -cholest-7-enes on a catalyst (Raney nickel) the corresponding (5α , 6α)- and (5β , 6β)epimers of previously unknown $\Delta^{8,14}$ -6-hydroxy derivatives of ecdysteroids were synthesized.

DOI: 10.1134/S1070428008050059

The unexpectedly high ecdysone activity found in the stable dimer of 7,7'-bis[20-hydroxy-14-deoxy- $\Delta^{8(l4)}$ ecdysone] obtained by UV irradiation of a water solution of the most representative hormone of insects ecdysis (20hydroxyecdysone) provoked the interest to the synthesis of the corresponding monomeric $\Delta^{8,14}$ -analog or related structures [2]. In earlier publications on photochemical transformations of the same ecdysteroid the isolation of $\Delta^{8,14}$ -analog of 20-hydroxyecdysone was reported [3, 4] but this information was disproved [2].

We found [1] that the hydrogenation on Raney nickel of 6α ,20-dihydroxy- 5α -ecdysone diacetonide led to the formation of its $\Delta^{8,14}$ -6-hydroxy analog. In extension on the studies of transformations of 6-hydroxy derivatives we synthesized under the conditions of catalytic hydrogenation from 6α - Δ^7 - (Ia) and 6β - Δ^7 - (Ib) epimeric allyl alcohols 6α - $\Delta^{8,14}$ - (IIa) and 6β - $\Delta^{8,14}$ -(IIb) homoallyl alcohols respectively. The structure of compounds IIa and IIb was established from 1D and 2D ¹H and ¹³C NMR spectra.

According to the data of ROESY spectrum in 6α epimeric alcohol **Ha** the proton H⁶ is axial and has β -configuration as shows the nuclear Overhauser effect (NOE) between this atom and the protons of the group H₃C¹⁹. Hydroxy group at the atom C⁶ of compound **Ha** consequently possesses the α -orientation and is equatorial. The large coupling constant ${}^{3}J_{5,6}$ 11 Hz indicates the axial-axial *trans*-location of protons H⁵ and H⁶ in the B ring of compound **Ha**, α -orientation of proton H⁵ and consequently the *trans*-junction of A and B rings.

In the ¹H NMR spectrum of 6β-alcohol **IIb** the signal of proton H⁶ was overlapped by water signal, and the lack of NOE between this atom and the protons of H_3C^{19} was unconvincing. It was presumable that the removal of the acetonide protection from the hydroxy groups at C^2 and C^3 would result in a shift of the H⁶ signal. Actually in the ¹H NMR spectrum of monoacetonide V obtained by the partial hydrolysis of diacetonide **IIb** the signal of H⁶ atom appeared in a weaker field $(\Delta \delta 0.18 \text{ ppm})$ and it was sufficient for a reliable proof of the absence of a correlation between the proton H^6 and protons H_3C^{19} in the ROESY spectra of 6 β -alcohols **IIb** and **V**. Consequently the proton H^6 in each of these alcohols possesses the α -configuration, and the hydroxy group at the atom C^6 in compounds IIb and V has the β -orientation. The configuration of the proton H⁵ in 6β-epimer IIb and its monoacetonide V was established with the use of ROESY spectra. The appearance of the correlation peaks between protons H⁵ and H₃C¹⁹ indicated the β -orientation of the proton H⁵ and the *cis*-junction of the A and B rings in these compounds.

Thus in the course of catalytic hydrogenation of 6,20-dihydroxy-5 α -ecdysones diacetonides **Ia** and **Ib** the 14 α -hydroxy group was subjected to hydrogenolysis accompanied with a shift of Δ^7 -bond into the position $\delta(14)$. The formed 6 α -alcohol **IIa** retained the transjunction of the A and B rings of the initial allyl alcohol **Ia**, whereas in the hydrogenation of 6 β -alcohol **IIb** an epimerization occurred at the C⁵ atom of the initial alcohol **Ib** resulting in the *cis*-junction of the A and B rings.

^{*} For preliminary Communication, see [1]

It was also established that under the conditions of the study the α -alcohol **Ia** alongside the hydrogenolysis product **IIa** yielded compound **III** identical to the known 20-hydroxyecdysone diacetonide [5, 6]. This fact shows that dehydrogenation of compound **Ia** occurs at the C⁶–O bond. Similar dehydrogenation of an allyl alcohol with the formation of a conjugated ketone was previously observed in alkaloids series [7]. In the hydrogenolysis of β -alcohol **Ib** alongside compound **IIb** formed a product of Δ^7 -bond reduction in the initial compound, saturated alcohol **IV** identical to that we had formerly obtained from the 20-hydroxyecdysone 7,8-dihydroanalog [8].

From the product of acid hydrolysis of compound **IIb** (by procedure [9]) alongside the corresponding monoacetonide V a mixture of compounds VI and VII was isolated that we failed to separate by column chromatography. In the ¹³C NMR spectrum of the mixture of compounds VI and VII lacked the signal at δ 84 ppm

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 5 2008

proving the absence of the 14 α -hydroxy group in these compounds. In the ¹³C NMR spectrum of this mixture the signals of compound **VI** are similar to those characteristic of alcohol **Ib** related by its structure to compound **VI**. The second compound in the two-component mixture, monoacetonide **VII**, gave rise to signals characteristic of the corresponding diacetonide obtained before [8]. From the intensity ratio of the signals at δ 5.34 and 5.55 ppm corresponding to vinyl protons at the atoms C¹⁵ in compound **VII** and C⁷ in compound **VI** respectively the ratio of these compounds in the isolated mixture amounts to 2:1. The formation of $\Delta^{7,8-}$ (**VI**) and $\Delta^{14,15-}$ (**VII**) alkenes resulted apparently from isomerizationdisproportionation in the acid medium of $\Delta^{8,14}$ -alkene **V** through an intermediate carbenium ion [10].

EXPERIMENTAL

¹H and ¹³C NMR spectra were registered on a spectrometer Bruker AM-300 at operating frequencies 300.13 (¹H) and 75.46 (¹³C) MHz, solvent CDCl₃. Homo- and heteronuclear spectra COSY, TOCSY, ROESY, HSQC, and HBMC were taken on a Bruker DRX-500 instrument [500.13 (¹H) and 125.76 (¹³C) MHz, solvent DMSO-*d*₆]. Chemical shifts are reported in the δ scale with respect to internal reference TMS. Melting points were measured on a Boëtius heating block. The specific rotation was estimated on a polarimeter Perkin-Elmer 141. TLC monitoring was carried out on plates covered with SiO₂ (Silufol), visualization of spots with vanillin solution in ethanol acidified with sulfuric acid.

(20R,22R)-2β,3β:20,22-Bis(isopropylidenedioxy)-5\alpha-cholest-8(14)-ene-6\alpha,25-diol (IIa) and 2,3:20,22-**20-hydroxyecdysone diacetonide (III).** Through a dispersion of 0.18 g (0.32 mmol) of alcohol Ia (mp 134–136°C, $[\alpha]_{D}^{18}$ 26.5°, obtained by procedure [11]), 1.8 g of Raney nickel (obtained by procedure [12] from the powder of Ni-Al alloy purchased from Acros organics), and 5 ml of ethanol was passed hydrogen at room temperature until complete disappearance of the initial substrate (~40 h, TLC monitoring). The catalyst was filtered off, the filtrate was evaporated, and the residue was subjected to chromatography on a column packed with 8 g of SiO_2 (eluent CHCl₃-MeOH, 20:1). We obtained 0.071 g (40%) of compound IIa (R_f 0.56, CHCl₃–MeOH, 10:1) and $0.026 \text{ g} (15\%) \text{ of compound III} (R_f 0.45, \text{CHCl}_3-\text{MeOH},$ 10:1, mp 234–235°C, ¹H and ¹³C NMR spectra identical to those previously published [5, 6]).

Compound (IIa). mp 88–90°C, $[\alpha]_D^{20}$ –2.0° (*c* 0.57, CHCl₃). ¹H (300.13 MHz, CDCl₃) and ¹³C (75.46 MHz,

 $CDCl_3$) NMR spectra identical to those previously published [13]. ¹H NMR spectrum (500.13 MHz, DMSO d_6), δ , ppm: 0.74 s (3H, H₃C¹⁹), 0.91 s (3H, H₃C¹⁸), 1.06 s (3H, H₃C²⁷), 1.07 s (3H, H₃C²⁶), 1.12 s (3H, H₃C²¹), 1.18 m and 2.00 m (2H, H₂C¹²), 1.19 m and 1.65 m (2H, H_2C^{I}), 1.23 s and 1.32 s (6H, 20,22-Me₂C), 1.24 s and 1.38 s (6H, 2,3-Me₂C), 1.34 m and 1.53 m (2H, H₂C²⁴), 1.38 m and 1.42 m (2H, H₂C²³), 1.41 m and 1.51 m (2H, H₂C¹¹), 1.71 m and 1.91 m (2H, H₂C¹⁶), 1.73 m (1H, H⁵), 1.78 m (1H, H⁷), 2.24 d.d (1H, H⁷', ²J_{7.7}' 13.5, ³J_{7'.6} 4.5 Hz), 1.83 m and 2.03 m (2H, H₂C⁴), 2.03 m (1H, H⁹), 2.18 m (1H, H¹⁷), 2.19 m and 2.26 m (2H, H₂C¹⁵), 3.72 m (1H, H²²), 3.84 d.d (1H, H⁶, J₆, 11.0, J₆₇, 4.5 Hz), 4.03 m (1H, H²), 4.21 m (1H, H³). ¹³C NMR spectrum (125.76 MHz, DMSO-*d*₆), δ, ppm: 18.7 (C¹¹), 18.9 (C¹⁸), 20.6 (C⁴), 21.2 (C²¹), 21.5 (C¹⁶), 22.8 (C²³), 23.6 (C¹⁹), 24.3 (C¹⁵), 26.0 and 28.1 (2,3-Me₂C), 26.1 and 28.5 (20,22-Me₂C), 28.6 (C²⁷), 28.9 (C²⁶), 32.4 (C⁷), 34.5 (C⁹), 36.3 (C¹²), 37.0 $(C^{10}), 38.5 (C^{1}), 40.5 (C^{24}), 42.2 (C^{5}), 42.3 (C^{13}), 54.7$ (C17), 65.1 (C6), 68.0 (C25), 70.9 (C2), 71.9 (C3), 80.6 (C²²), 82.9 (C²⁰), 105.5 (2,3-Me₂C), 106.0 (20,22-Me₂C), 124.1 (C⁸), 142.0 (C¹⁴).

(20*R*,22*R*)-2β,3β:20,22-Bis(isopropylidenedioxy)-5β-cholest-8(14)-ene-6β,25-diol (IIb) and (20*R*,22*R*)-2β,3β:20,22-bis(isopropylidenedioxy)-5β,8α-cholestane-6α,14α,25-triol (IV). Through a dispersion of 0.18 g (0.32 mmol) of alcohol Ib (mp 125–127°C, $[\alpha]_D^{24}$ +8.4°, obtained by procedure [11]), 1.8 g of Raney nickel, and 5 ml of ethanol was passed hydrogen at room temperature (~40 h, TLC monitoring). The catalyst was filtered off, the filtrate was evaporated, and the residue (0.19 g) was subjected to chromatography on a column packed with 8 g of SiO₂ (eluent CHCl₃–MeOH, 20:1). We obtained 0.079 g (45%) of compound IIb (*R_f* 0.59, CHCl₃–MeOH, 10:1) and 0.030 g (17%) of compound IV (*R_f* 0.34, CHCl₃–MeOH, 10:1, ¹H and ¹³C NMR spectra identical to those published in [8]).

Compound (IIb). mp 106–108°C, $[\alpha]_D^{20}$ 1.7° (*c* 2.5, CHCl₃), ¹H (300.13 MHz, CDCl₃) and ¹³C (75.46 MHz, CDCl₃) NMR spectra identical to those previously published [1]. ¹H NMR spectrum (500.13 MHz, DMSO-*d*₆), δ , ppm: 0.90 s (3H, H₃C¹⁹), 0.92 s (3H, H₃C¹⁸), 1.06 s (3H, H₃C²⁷), 1.07 s (3H, H₃C²⁶), 1.10 s (3H, H₃C²¹), 1.22 s and 1.37 s (6H, 2,3-Me₂C), 1.23 s and 1.32 s (6H, 20,22-Me₂C), 1.23 m and 2.01 m (2H, H₂C¹²), 1.33 m and 1.54 m (2H, H₂C²⁴), 1.35 m (1H, H¹⁷), 1.38 m and 1.47 m (2H, H₂C¹), 1.43 m and 1.47 m (2H, H₂C¹³), 1.43 m (1H, H⁵), 1.43 m and 1.47 m (2H, H₂C¹⁶), 1.74 m and 1.95 m (2H, H₂C¹⁶),

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 5 2008

1.89 d.d (1H, H⁷, ${}^{2}J_{7,7'}$ 16.0, ${}^{3}J_{7,6}$ 10.0 Hz), 2.25 d.d (1H, H⁷), ${}^{2}J_{7',7}$ 16.0, ${}^{3}J_{7',6}$ 4.0 Hz), 1.96 m (1H, H⁹), 2.09 m and 2.12 m (2H, H₂C¹⁵), 3.38 m (1H, H⁶), 3.71 m (1H, H²²), 4.24 m (2H, H², H³). 13 C NMR spectrum (125.76 MHz, DMSO- d_6), δ , ppm: 19.4 (C¹¹), 19.9 (C¹⁸), 21.7 (C²¹), 22.2 (C¹⁶), 23.3 (C²³), 24.3 (C¹⁵), 24.3 and 26.9 (2,3-Me₂C), 26.3 (C¹⁹), 26.6 and 29.0 (20,22-Me₂C), 28.3 (C⁴), 29.1 (C²⁷), 29.4 (C²⁶), 34.6 (C⁷), 34.9 (C¹⁰), 36.5 (C¹), 37.0 (C¹²), 39.0 (C⁹), 41.0 (C²⁴), 42.9 (C¹³), 43.8 (C⁵), 54.8 (C¹⁷), 68.5 (C²⁵), 69.4 (C⁶), 71.6 (C³), 71.7 (C²), 81.1 (C²²), 83.4 (C²⁰), 106.0 (20,22-Me₂C), 106.2 (2,3-Me₂C), 124.3 (C⁸), 142.5 (C¹⁴).

(20R,22R)-20,22-Isopropylidenedioxy-5β-cholest-8(14)ene-2β,3β,6β,25-tetraol (V) and a mixture of (20R,22R)-20,22-isopropylidenedioxy-5a-cholest-7ene-2β,3β,6β,25-tetraol (VI) and (20R,22R)20,22isopropylidenedioxy-5β,8α-cholest-14-ene-2β,3β, **6β,25-tetraol (VII).** To a solution of 0.15 g (0.28 mmol) of compound IIb in 2.7 ml of MeOH was added 4 ml of glacial AcOH, the reaction mixture was stirred at room temperature for 5 h, then it was evaporated, and the residue (0.14 g) was subjected to chromatography on a column packed 6 g of SiO₂ (eluent CHCl₃–MeOH, 20:1). We obtained 0.03 g (22%) of the mixture of compounds VI and VII [1:2, from the intensity ratio of broadened signals at δ 5.55 (HC⁷ of compound VI) and 5.34 ppm $(HC^{15} of compound VII)$], $R_f 0.37 (CHCl_3-MeOH, 5:1)$, and 0.07 g (51%) of compound V, $R_f 0.30$ (CHCl₃–MeOH, 5:1).

Compound (V). mp 189–191°C, $[\alpha]_D^{20}$ 12.4° (*c* 1.45, CHCl₃). ¹H NMR spectrum (300.13 MHz, CDCl₃), δ, ppm: 1.01 s (3H, H₃C¹⁹), 1.05 s (3H, H₃C¹⁸), 1.19 s (3H, H₃C²¹), 1.23s (6H, H₃C²⁶, H₃C²⁷), 1.36 s and 1.43 s (6H, Me₂C), 1.47–2.43 m (21H, CH, CH₂), 3.74 m (3H, HC², H_2C^{22} , $w_{1/2}$ 37 Hz), 3.78 m (1H, HC⁶, $w_{1/2}$ 14 Hz), 4.01 m $(1H, HC^3, w_{1/2} 7 Hz)$. ¹³C NMR spectrum (75.46 MHz, CDCl₃), δ, ppm: 19.3 (C¹⁸), 19.5 (C¹¹), 22.0 (C²¹), 22.6 (C²³), 23.9 (C¹⁶), 25.3 (C¹⁹), 26.2 (C¹⁵), 26.8 and 29.6 (Me₂C), 29.0 and 29.1 (C²⁶, C²⁷), 32.4 (C⁴), 33.4 (C⁷), 36.6 (C⁹), 37.4 (C¹²), 37.9 (C¹), 38.2 (C¹⁰), 41.4 (C²⁴), 42.5 (C¹³), 43.5 (C⁵), 55.9 (C¹⁷), 67.7 (C²), 68.9 (C³), 70.4 (C²⁵), 73.3 (C⁶), 81.8 (C²²), 84.1 (C²⁰), 106.9 (Me₂<u>C</u>), 122.8 (C⁸), 145.2 (C¹⁴). ¹H NMR spectrum (500.13 MHz, DMSO- d_6), δ, ppm: 0.91 s (3H, H₃C¹⁹), 0.93 s (3H, H₃C¹⁸), 1.06 s (3H, H₃C²⁷), 1.07 C (3H, H₃C²⁶), 1.11 s (3H, H₃C²¹), 1.16 m and 2.03 m (2H, H₂C¹²), 1.23 s and 1.33 s (6H, Me₂C), 1.34 m and 1.55 m (2H, H_2C^{24}), 1.34 m (1H, H^{17}), 1.36 m (2H, H₂C¹), 1.39 m and 1.42 m (2H, H₂C²³), 1.42 m and 1.61 m (2H, H_2C^4), 1.49 m and 1.51 m (2H, H₂C¹¹), 1.70 m and 1.91 m (2H, H₂C¹⁶), 1.78 d.br.s (1H, H⁵, $J_{5,4a}$ 12 Hz), 1.96 m and 2.22 m (2H, H₂C⁷), 2.17 m and 2.24 m (2H, H₂C¹⁵), 2.19 m (1H, H⁹), 3.47 m (1H, H²), 3.56 br.s (1H, H⁶, $w_{1/2}$ 8 Hz), 3.73 m (2H, H³, H²²). ¹³C NMR spectrum (125.76 MHz, DMSO- d_6), δ , ppm: 19.1 (C¹¹), 19.3 (C¹⁸), 21.8 (C²¹), 22.2 (C¹⁶), 23.4 (C²³), 24.9 (C¹⁵), 25.9 (C¹⁹), 26.6 and 29.4 (Me₂C), 29.0 (C²⁷), 29.1 (C²⁶), 32.7 (C⁴), 33.1 (C⁷), 35.9 (C⁹), 37.0 (C¹²), 37.4 (C¹⁰), 38.3 (C¹), 41.0 (C²⁴), 41.6 (C⁵), 42.7 (C¹³), 55.5 (C¹⁷), 66.5 (C²), 68.2 (C³), 68.5 (C²⁵), 71.4 (C⁶), 81.2 (C²²), 83.4 (C²⁰), 106.0 (Me₂C), 124.7 (C⁸), 141.8 (C¹⁴).

The study was carried out under a financial support of the Russian Foundation for Basic Research (grant no. 04-03-33103) and of a grant of the President of the Russian Federation for the State support of young Russian scientists MK-6975.2006.3 and MK-1398.2006.3.

REFERENCES

- Shafikov, R.V., Afon'kina, S.R., Savchenko, R.G., Galyautdinov, I.V., and Odinokov, V.N., *Zh. Org. Khim.*, 2007, vol. 43, p. 310.
- Harmatha, Ju., Dinan, L., and Lafont, R., *Insect Biochem.* Mol. Biol., 2002, vol. 32, p. 181.
- Canonina, L., Danielli, B., Lesma, G., and Palmisano, G., Chem. Commun., 1985, p. 1321.
- Canonina, L., Danielli, B., Lesma, G., Palmisano, G., and Mugnoli, A., *Helv. Chim. Acta*, 1987, vol. 70, p. 701.
- Odinokov, V.N., Galyautdinov, I.V., Nedopekin, D.V., and Khalilov, L.M., *Izv. Akad. Nauk, Ser. Khim.*, 2003, p. 220.
- Lafont, R., Harmatha, J., Marion-Poll, F., Dinan, L., and Wilson, I.D., *Ecdybase a Free Ecdysteroid Database*, 2002, http://www.ecdybase.org.
- 7. Narzullaev, A.S., Yunusov, M.S., Moiseenko, A.M., and Sabirov, S.S., *Khim. Polim. Soedin.*, 1989, p. 372.
- Odinokov, V.N., Afon'kina, S.R., Shafikov, R.V., Savchenko, R.G., Galyautdinov, I.V., Khalilov, L.M., and Shashkov, A.S., *Zh. Org. Khim.*, 2007, vol. 43, p. 830.
- 9. Suksamrarn, A. and Pattanaprateep, P., *Tetrahedron*, 1995, vol. 51, p. 10663.
- 10. Comprehensive Organic Chemistry, Barton, D. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, vol. 1, p. 228.
- Odinokov, V.N., Savchenko, R.G., Shafikov, R.V., Afon'kina, S.R., Khalilov, L.M., Kachala, V.V., and Shashkov, A.S., *Zh. Org. Khim.*, 2005, vol. 41, p. 1323.
- 12. Fieser, L. F. and Fieser, M., *Advanced Organic Chemistry*, New York: Reinhold, 1962.
- Galyautdinov, I.V., Ibragimova, A.Sh., Shakurova, E.R., and Odinokov, V.N., *Zh. Org. Khim.*, 2007, vol. 43, p. 1566.